EconPapers    
Economics at your fingertips  
 

On bootstrapping L2-type statistics in density testing

Michael H. Neumann and Efstathios Paparoditis

Statistics & Probability Letters, 2000, vol. 50, issue 2, 137-147

Abstract: We consider non-parametric tests for checking parametric hypotheses about the stationary density of weakly dependent observations. The test statistic is based on the L2-distance between a non-parametric and a smoothed version of a parametric estimate of the stationary density. Since this statistic behaves asymptotically as in the case of independent observations an i.i.d.-type bootstrap to determine the critical value for the test is proposed.

Keywords: Bootstrap; Stationary; density; Test; Weak; dependence (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00091-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:50:y:2000:i:2:p:137-147

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:50:y:2000:i:2:p:137-147