Some pathological regression asymptotics under stable conditions
Roger Koenker and
Stephen Portnoy
Statistics & Probability Letters, 2000, vol. 50, issue 3, 219-228
Abstract:
We consider a simple through-the-origin linear regression example introduced by Rousseeuw, van Aelst and Hubert (J. Amer. Stat. Assoc., 94 (1994) 419-434). It is shown that the conventional least squares and least absolute error estimators converge in distribution without normalization and consequently are inconsistent. A class of weighted median regression estimators, including the maximum depth estimator of Rousseeuw and Hubert (J. Amer. Stat. Assoc., 94 (1999) 388-402), are shown to converge at rate n-1. Finally, the maximum likelihood estimator is considered, and we observe that there exist estimators that converge at rate n-2. The results illustrate some interesting, albeit somewhat pathological, aspects of stable-law convergence.
Keywords: Asymptotics; Median; regression; LAD; regression; Stable; law; Data; depth (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00107-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:50:y:2000:i:3:p:219-228
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().