L1 geometric ergodicity of a multivariate nonlinear AR model with an ARCH term
Zudi Lu and
Zhenyu Jiang
Statistics & Probability Letters, 2001, vol. 51, issue 2, 121-130
Abstract:
In this note, the condition to ensure the L1 geometric ergodicity of a multivariate nonlinear AR model mixed with an ARCH term (also called conditional heteroscedastic autoregressive nonlinear model) is investigated. Under some mild conditions on the white noise process with first absolute moment, a sufficient condition much weaker than that by Ango Nze (C.R. Acad. Sci. Paris 315 ser. 1 (1992) 1301-1304) is derived. As an application, the L1 geometric ergodicity of an additive AR model mixed with a multiplicative ARCH term is studied. Our condition expands the application of the result in Ango Nze (C.R. Acad. Sci. Paris 315 ser. 1 (1992) 1301-1304) and is interesting for robust modeling when the white noise is fat-tailed with infinite variance. Some additional remarks are also made.
Keywords: Autoregression; Conditional; heteroscedasticity; L1; geometric; ergodicity; Markov; chain; Multivariate; AR-ARCH; (CHARN); model (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00138-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:51:y:2001:i:2:p:121-130
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().