EconPapers    
Economics at your fingertips  
 

A unified treatment of direct and indirect estimation of a probability density and its derivatives

Belkacem Abdous, Stéphane Germain and Nadia Ghazzali

Statistics & Probability Letters, 2002, vol. 56, issue 3, 239-250

Abstract: This paper presents convolution-based estimates of a probability density and its derivatives. The proposed estimates can handle either contaminated data or not and they comprehend some classical estimates such that kernel, regularization estimates. By putting these direct and indirect estimation problems in the same framework, we clearly see how the estimates performances are affected by contamination and by the order of the derivative to be estimated. Minimax optimal rates for the MISE criterion are proposed.

Keywords: Kernel; estimation; Deconvolution; Regularization; Ill-posed; problems; Density; derivatives; Wavelets; estimates (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00164-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:56:y:2002:i:3:p:239-250

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:56:y:2002:i:3:p:239-250