A unified treatment of direct and indirect estimation of a probability density and its derivatives
Belkacem Abdous,
Stéphane Germain and
Nadia Ghazzali
Statistics & Probability Letters, 2002, vol. 56, issue 3, 239-250
Abstract:
This paper presents convolution-based estimates of a probability density and its derivatives. The proposed estimates can handle either contaminated data or not and they comprehend some classical estimates such that kernel, regularization estimates. By putting these direct and indirect estimation problems in the same framework, we clearly see how the estimates performances are affected by contamination and by the order of the derivative to be estimated. Minimax optimal rates for the MISE criterion are proposed.
Keywords: Kernel; estimation; Deconvolution; Regularization; Ill-posed; problems; Density; derivatives; Wavelets; estimates (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00164-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:56:y:2002:i:3:p:239-250
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().