Distribution-free consistency of kernel non-parametric M-estimators
Andrzej S. Kozek and
Miroslaw Pawlak
Statistics & Probability Letters, 2002, vol. 58, issue 4, 343-353
Abstract:
We prove that in the case of independent and identically distributed random vectors (Xi,Yi) a class of kernel type M-estimators is universally and strongly consistent for conditional M-functionals. The term universal means that the strong consistency holds for all joint probability distributions of (X,Y). The conditional M-functional minimizes (2.2) for almost every x. In the case M(y)=y the conditional M-functional coincides with the L1-functional and with the conditional median.
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00106-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:58:y:2002:i:4:p:343-353
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().