Information matrices of maximal parameter subsystems in linear models
Thomas Klein
Statistics & Probability Letters, 2003, vol. 62, issue 4, 355-360
Abstract:
It is shown that the information matrices of maximal parameter subsystems in linear models are linear functions of the moment matrices. With this result, design problems for maximal parameter subsystems are shown to be equivalent to design problems for the full parameter vector of a minimally parameterized model.
Keywords: Design; optimality; Experimental; design; Moment; matrix; Reparameterization (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00038-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:62:y:2003:i:4:p:355-360
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().