Extremes of geometric variables with applications to branching processes
Kosto V. Mitov,
Anthony G. Pakes and
George P. Yanev
Statistics & Probability Letters, 2003, vol. 65, issue 4, 379-388
Abstract:
We obtain limit theorems for the row extrema of a triangular array of zero-modified geometric random variables. Some of this is used to obtain limit theorems for the maximum family size within a generation of a simple branching process with varying geometric offspring laws.
Keywords: Sample; extrema; Geometric; arrays; Branching; processes; Varying; environments; Maximum; family; sizes (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00286-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:65:y:2003:i:4:p:379-388
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().