Sub-fractional Brownian motion and its relation to occupation times
Tomasz Bojdecki,
Luis G. Gorostiza and
Anna Talarczyk
Statistics & Probability Letters, 2004, vol. 69, issue 4, 405-419
Abstract:
We study a long-range dependence Gaussian process which we call "sub-fractional Brownian motion" (sub-fBm), because it is intermediate between Brownian motion (Bm) and fractional Brownian motion (fBm) in the sense that it has properties analogous to those of fBm, but the increments on non-overlapping intervals are more weakly correlated and their covariance decays polynomially at a higher rate. Sub-fBm has a parameter h[set membership, variant](0,2), we show how it arises from occupation time fluctuations of branching particle systems for h[greater-or-equal, slanted]1 and we exhibit the long memory effect of the initial condition.
Keywords: Long-range; dependence; Fractional; Brownian; motion; Sub-fractional; Brownian; motion; Occupation; time; fluctuations; Branching; systems (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00193-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:69:y:2004:i:4:p:405-419
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().