Kernel density estimation on Riemannian manifolds
Bruno Pelletier
Statistics & Probability Letters, 2005, vol. 73, issue 3, 297-304
Abstract:
The estimation of the underlying probability density of n i.i.d. random objects on a compact Riemannian manifold without boundary is considered. The proposed methodology adapts the technique of kernel density estimation on Euclidean sample spaces to this nonEuclidean setting. Under sufficient regularity assumptions on the underlying density, L2 convergence rates are obtained.
Keywords: Nonparametric; density; estimation; Kernel; density; estimation; Riemannian; manifolds; L2; convergence (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00123-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:73:y:2005:i:3:p:297-304
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().