EconPapers    
Economics at your fingertips  
 

Nonparametric estimation for quadratic regression

Samprit Chatterjee and Ingram Olkin

Statistics & Probability Letters, 2006, vol. 76, issue 11, 1156-1163

Abstract: The method of least squares provides the most widely used algorithm for fitting a linear model. A variety of nonparametric procedures have been developed that are designed to be robust against model violations and resistant against aberrant points. One such method introduced by Theil [1950. A rank-invariant method of linear and polynomial regression analysis. I, II, III. Proc. Ned. Akad. Wet. 53, 386-392, 521-525, 1397-1412] is based on pairwise estimates. There are many examples in which the data are nonlinear, and in particular, where a quadratic fit may be more appropriate. We here propose a nonparametric method for fitting a quadratic regression.

Keywords: Distribution-free; regression; Theil; estimator; Least; squares; regression; Robust; regression (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00469-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:76:y:2006:i:11:p:1156-1163

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:76:y:2006:i:11:p:1156-1163