EconPapers    
Economics at your fingertips  
 

Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms

Simos Meintanis and Jan Swanepoel

Statistics & Probability Letters, 2007, vol. 77, issue 10, 1004-1013

Abstract: Several test statistics have been proposed recently which employ a weighted distance that depends on an empirical transform, as well as on estimated parameters. The empirical characteristic function is a typical example, but alternative empirical transforms have also been employed, such as the empirical Laplace transform when dealing with non-negative random variables or the empirical probability generating function corresponding to discrete observations. We propose a general formulation that covers most of the transform-based test statistics which have appeared in the literature. Under this formulation, the asymptotic properties of the test statistics, such as the limiting null distribution and the consistency under general alternatives, are derived. Since large-sample critical values are extremely complicated (if not impossible) to compute, two effective bootstrap versions of the test procedures are derived, which can be used to approximate the critical values, for any given sample size, and to calculate the power under contiguous alternatives. The validity of these bootstrap procedures is shown analytically.

Keywords: Empirical; characteristic; function; Empirical; Laplace; transform; Empirical; probability; generating; function; Asymptotic; distribution; Consistency (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00040-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:77:y:2007:i:10:p:1004-1013

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:77:y:2007:i:10:p:1004-1013