Inclusion and exclusion of data or parameters in the general linear model
S. Rao Jammalamadaka and
D. Sengupta
Statistics & Probability Letters, 2007, vol. 77, issue 12, 1235-1247
Abstract:
This paper revisits the topic of how linear functions of observations having zero expectation, play an important role in our statistical understanding of the effect of addition or deletion of a set of observations in the general linear model. The effect of adding or dropping a group of parameters is also explained well in this manner. Several sets of update equations were derived by previous researchers in various special cases of the general set-up that we consider here. The results derived here bring out the common underlying principles of these update equations and help integrate these ideas. These results also provide further insights into recursive residuals, design of experiments, deletion diagnostics and selection of subset models.
Keywords: Linear; zero; functions; Singular; linear; model; Updating; equations; Diagnostics; Subset; selection; Recursive; residuals (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00087-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:77:y:2007:i:12:p:1235-1247
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().