EconPapers    
Economics at your fingertips  
 

Influence analysis of non-Gaussianity by applying projection pursuit

Yufen Huang, Ching-Ren Cheng and Tai-Ho Wang

Statistics & Probability Letters, 2007, vol. 77, issue 14, 1515-1521

Abstract: The Gaussian distribution is the least structured from the information-theoretic point of view. In this paper, projection pursuit is used to find non-Gaussian projections to explore the clustering structure of the data. We use kurtosis as a measure of non-Gaussianity to find the projection directions. Kurtosis is well known to be sensitive to influential points/outliers, and so the projection direction will be greatly affected by unusual points. We also develop the influence functions of projection directions to investigate abnormal observations. A data example illustrates the application of these approaches.

Keywords: Influence; function; Kurtosis; Non-Gaussianity; Projection; pursuit (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00123-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:77:y:2007:i:14:p:1515-1521

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:77:y:2007:i:14:p:1515-1521