Two-stage efficient estimation of longitudinal nonparametric additive models
Jinhong You and
Haibo Zhou
Statistics & Probability Letters, 2007, vol. 77, issue 17, 1666-1675
Abstract:
Nonparametric smoothings are useful tool to model longitudinal data. In this paper we study the estimating problem of longitudinal nonparametric additive regression models. A two-stage efficient approach is developed to estimate the unknown additive components. We show the resulted estimators have some advantages over the existed ones. For example, they are asymptotically more efficient than those neglecting the dependence of repeated observations over time within the same subject, have an oracle property, that is the asymptotic distribution of each additive component is the same as it would be if the other components were known with certainty, and can be naturally extended to deal with generalized longitudinal nonparametric additive regression model. The asymptotic normality is established for the underlying additive components. Some simulation studies are conducted to illustrate the finite sample performance of the proposed procedure. Applying the proposed procedure to a real data set is also made.
Keywords: Longitudinal; data; Additive; model; Two-stage; estimation; Efficiency; Oracle; property (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00150-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:77:y:2007:i:17:p:1666-1675
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().