A note on quasi-likelihood for exponential families
David H. Annis
Statistics & Probability Letters, 2007, vol. 77, issue 4, 431-437
Abstract:
Maximum likelihood estimation for exponential families depends exclusively on the first two moments of the data. Recognizing this, Wedderburn [1974. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61, 439-447] proposed estimating regression parameters based on a quasi-likelihood function requiring only the relationship between the mean and variance. We extend quasi-likelihood to situations in which there exists vague prior information on the mean parameters. It is shown when data are exponential family with quadratic variance functions, maximum a posteriori inference under a conjugate prior relies solely on two moments of the data and the prior distribution. This result suggests a Bayesian analog of quasi-likelihood for which only two moments of the data and two moments of the prior need be specified.
Keywords: Quasi-likelihood; Bayesian; Conjugate; prior (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00262-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:77:y:2007:i:4:p:431-437
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().