Clustering gene expression profile data by selective shrinkage
Hemant Ishwaran and
J. Sunil Rao
Statistics & Probability Letters, 2008, vol. 78, issue 12, 1490-1497
Abstract:
Clustering of gene expression profiles is a widely used approach for finding macroscopic data structure. A complication in such analyses is that not all genes are informative for forming clusters and different clusters might have different transcription regulation. Driven by these considerations, we present a novel two-stage clustering approach. The first stage identifies informative genes by adaptive variable selection using pseudo-samples modeled by a high dimensional multigroup ANOVA model. Variables are selected using a rescaled spike and slab Bayesian hierarchical model having a special selective shrinkage property. The second stage uses output from the first stage for clustering. We demonstrate why selective shrinkage occurs, and by extension, why it is useful for the clustering paradigm. We analyze a human gene atlas expression dataset where the question of interest is to look for tissue-specific transcription regulation and investigate whether tissues can be grouped together due to similar genomic control.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00002-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:12:p:1490-1497
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().