Asymptotics of sums of lognormal random variables with Gaussian copula
Søren Asmussen and
Leonardo Rojas-Nandayapa
Statistics & Probability Letters, 2008, vol. 78, issue 16, 2709-2714
Abstract:
Let (Y1,...,Yn) have a joint n-dimensional Gaussian distribution with a general mean vector and a general covariance matrix, and let , Sn=X1+...+Xn. The asymptotics of as n-->[infinity] are shown to be the same as for the independent case with the same lognormal marginals. In particular, for identical marginals it holds that no matter what the correlation structure is.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00189-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:16:p:2709-2714
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().