Sharp bounds on the causal effects in randomized experiments with "truncation-by-death"
Kosuke Imai
Statistics & Probability Letters, 2008, vol. 78, issue 2, 144-149
Abstract:
Many randomized experiments suffer from the "truncation-by-death" problem where potential outcomes are not defined for some subpopulations. For example, in medical trials, quality-of-life measures are only defined for surviving patients. In this article, I derive the sharp bounds on causal effects under various assumptions. My identification analysis is based on the idea that the "truncation-by-death" problem can be formulated as the contaminated data problem. The proposed analytical techniques can be applied to other settings in causal inference including the estimation of direct and indirect effects and the analysis of three-arm randomized experiments with noncompliance.
Keywords: Average; treatment; effect; Causal; inference; Direct; and; indirect; effect; Identification; Principal; stratification; Quantile; treatment; effect (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00205-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:2:p:144-149
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().