Reliability estimation of the selected exponential populations
Somesh Kumar,
Ajaya Kumar Mahapatra and
P. Vellaisamy
Statistics & Probability Letters, 2009, vol. 79, issue 11, 1372-1377
Abstract:
Let [Pi]1,[Pi]2,...,[Pi]k be k populations with [Pi]i being exponential with an unknown location parameter [mu]i and a common but known scale parameter [sigma], i=1,...,k. Suppose independent random samples are drawn from the populations [Pi]1,[Pi]2,...,[Pi]k. Let {Xi1,Xi2,...,Xin} denote the sample drawn from ith population, i=1,...,k. A subset of the populations with high reliabilities is selected according to Gupta's [Gupta, S.S., 1965. On some multiple decision (Selection and Ranking) rules. Technometrics 7, 225-245] subset selection procedure. We consider the problem of estimating simultaneously the reliability functions of the populations in the selected subset. The uniformly minimum variance unbiased estimator (UMVUE) is derived and its inadmissibility is established. An estimator improving the natural estimator is also obtained by using the differential inequality approach used by Vellaisamy and Punnen [Vellaisamy, P., Punnen, A.P., 2002. Improved estimators for the selected location parameters. Statist. Papers 43, 291-299].
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00075-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:79:y:2009:i:11:p:1372-1377
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().