EconPapers    
Economics at your fingertips  
 

Characterizing the variance improvement in linear Dirichlet random effects models

Minjung Kyung, Jeff Gill and George Casella

Statistics & Probability Letters, 2009, vol. 79, issue 22, 2343-2350

Abstract: An alternative to the classical mixed model with normal random effects is to use a Dirichlet process to model the random effects. Such models have proven useful in practice, and we have observed a noticeable variance reduction, in the estimation of the fixed effects, when the Dirichlet process is used instead of the normal. In this paper we formalize this notion, and give a theoretical justification for the expected variance reduction. We show that for almost all data vectors, the posterior variance from the Dirichlet random effects model is smaller than that from the normal random effects model.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00305-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:79:y:2009:i:22:p:2343-2350

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:79:y:2009:i:22:p:2343-2350