Robust quantile estimation and prediction for spatial processes
Sophie Dabo-Niang and
Baba Thiam ()
Statistics & Probability Letters, 2010, vol. 80, issue 17-18, 1447-1458
Abstract:
In this paper, we present a statistical framework for modeling conditional quantiles of spatial processes assumed to be strongly mixing in space. We establish the L1 consistency and the asymptotic normality of the kernel conditional quantile estimator in the case of random fields. We also define a nonparametric spatial predictor and illustrate the methodology used with some simulations.
Keywords: Spatial; processes; Kernel; estimate; Conditional; quantile; Spatial; prediction (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00155-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:17-18:p:1447-1458
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().