Regularization and integral representations of Hermite processes
Vladas Pipiras and
Murad S. Taqqu
Statistics & Probability Letters, 2010, vol. 80, issue 23-24, 2014-2023
Abstract:
It is known that Hermite processes have a finite-time interval representation. For fractional Brownian motion, the representation has been well known and plays a fundamental role in developing stochastic calculus for the process. For the Rosenblatt process, the finite-time interval representation was originally established by using cumulants. The representation was extended to general Hermite processes through the convergence of suitable partial sum processes. We provide here an alternative and different proof for the finite-time interval representation of Hermite processes. The approach is based on regularization of Hermite processes and the fractional Gaussian noises underlying them, and does not use cumulants nor convergence of partial sums.
Keywords: Fractional; Brownian; motion; Hermite; processes; Multiple; Wiener-Ito; integrals; Stochastic; Fubini; theorem; Regularization (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00258-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:23-24:p:2014-2023
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().