Relative deficiency of quantile estimators for left truncated and right censored data
Mu Zhao,
Fangfang Bai and
Yong Zhou
Statistics & Probability Letters, 2011, vol. 81, issue 11, 1725-1732
Abstract:
The quantity deficiency which was proposed by Hodges and Lehmann (1970) is used to compare different statistical procedures. In this article, the deficiency of the sample quantile estimator with respect to the kernel quantile estimator for left truncated and right censored (LTRC) data in the sense of Hodges and Lehmann is considered. We also give the optimal bandwidth for the kernel quantile estimator. Monte Carlo studies are conducted to illustrate our results.
Keywords: Truncated; and; censored; data; Quantile; estimator; Smoothed; quantile; estimator; Deficiency (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211002264
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:11:p:1725-1732
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().