A longitudinal model for repeated interval-observed data with informative dropouts
Huichao Chen and
Amita K. Manatunga
Statistics & Probability Letters, 2011, vol. 81, issue 2, 292-297
Abstract:
We consider repeated measures interval-observed data with informative dropouts. We model the repeated outcomes via an unobserved random intercept and it is assumed that the probability of dropout during the study period is linearly related to the random intercept in a complementary log-log scale. Assuming the random effect follows the power variance function (PVF) family suggested by Hougaard (2000), we derive the marginal likelihood in a closed form. We evaluate the performance of the maximum likelihood estimation via simulation studies and apply the proposed method to a real data set.
Keywords: Interval-observed; data; Informative; dropouts; Power; variance; function (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00295-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:2:p:292-297
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().