Partial monotonicity of entropy measures
Dhruv Shangari and
Jiahua Chen
Statistics & Probability Letters, 2012, vol. 82, issue 11, 1935-1940
Abstract:
The quantification of entropy has prominence in a diverse range of fields of study including information theory, quantum mechanics, thermodynamics, ecology, evolutionary biology and even sociology. Suppose we interpret the entropy of a random object as a measurement of the uncertainty about its outcome. This measurement is expected to decrease when the object’s outcome is confined into a shrinking interval. Entropies conforming to this intuition are thus sensible and likely useful measures of uncertainty. In this paper, we give a necessary and sufficient condition for the Shannon entropy of an absolutely continuous random variable to be an increasing function of the interval. Similar results are also obtained for the Renyi entropy of absolutely continuous random variables and their convolution.
Keywords: Entropy; Information; Log-concavity; Partial monotonicity; Uncertainty (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212002635
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:11:p:1935-1940
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.06.029
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().