On weak dependence conditions: The case of discrete valued processes
Paul Doukhan,
Konstantinos Fokianos and
Xiaoyin Li
Statistics & Probability Letters, 2012, vol. 82, issue 11, 1941-1948
Abstract:
We investigate the relationship between weak dependence and mixing for discrete valued processes. We show that weak dependence implies mixing conditions under natural assumptions. The results specialize to the case of Markov processes. Several examples of integer valued processes are discussed and their weak dependence properties are investigated by means of a contraction principle. In fact, we show the stronger result that the mixing coefficients for infinite memory weakly dependent models decay geometrically fast. Hence, all integer values models that we consider have weak dependence coefficients which decay geometrically fast.
Keywords: Contraction; Dependence; Integer autoregressive processes; Mixing; Thinning operator (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212002544
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:11:p:1941-1948
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.06.020
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().