A novel Univariate Marginal Distribution Algorithm based discretization algorithm
Jing Zhao,
ChongZhao Han,
Bin Wei and
DeQiang Han
Statistics & Probability Letters, 2012, vol. 82, issue 11, 2001-2007
Abstract:
Many data mining algorithms can only deal with discrete data or have a better performance on discrete data; however, for some technological reasons often we can only obtain the continuous value in the real world. Therefore, discretization has played an important role in data mining. Discretization is defined as the process of mapping the continuous attribute space into the discrete space, namely, using integer values or symbols to represent the continuous spaces. In this paper, we proposed a discretization method on the basis of a Univariate Marginal Distribution Algorithm (UMDA). The UMDA is a combination of statistics learning theory and Evolution Algorithms. The fitness function of the UMDA not only took the accuracy of the classifier into account, but also the number of breakpoints. Experimental results showed that the algorithm proposed in this paper could effectively reduce the number of breakpoints, and at the same time, improve the accuracy of the classifier.
Keywords: Univariate Marginal Distribution Algorithm; Breakpoints; Discretization; Estimation of Distribution Algorithms; Data mining (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212001976
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:11:p:2001-2007
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.05.022
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().