Asymptotic properties of sieve bootstrap prediction intervals for FARIMA processes
Maduka Rupasinghe and
V.A. Samaranayake
Statistics & Probability Letters, 2012, vol. 82, issue 12, 2108-2114
Abstract:
The sieve bootstrap is a resampling technique that uses autoregressive approximations of order p to model invertible linear time series, where p is allowed to go to infinity with sample size n. The asymptotic properties of sieve bootstrap prediction intervals for stationary invertible linear processes with short memory have been established in the past. In this paper, we extend these results to long memory (FARIMA) processes. We show that under certain regularity conditions the sieve bootstrap provides consistent estimators of the conditional distribution of future values of FARIMA processes, given the observed data.
Keywords: ARFIMA; Forecast intervals; Fractionally integrated time series; Long memory processes; Autoregressive approximations (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212002830
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:12:p:2108-2114
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.07.011
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().