Asymptotic efficiency of ridge estimator in linear and semiparametric linear models
June Luo
Statistics & Probability Letters, 2012, vol. 82, issue 1, 58-62
Abstract:
The linear model with a growing number of predictors arises in many contemporary scientific endeavor. In this article, we consider the commonly used ridge estimator in linear models. We propose analyzing the ridge estimator for a finite sample size n and a growing dimension p. The existence and asymptotic normality of the ridge estimator are established under some regularity conditions when p→∞. It also occurs that a strictly linear model is inadequate when some of the relations are believed to be of certain linear form while others are not easily parameterized, and thus a semiparametric partial linear model is considered. For these semiparametric partial linear models with p>n, we develop a procedure to estimate the linear coefficients as if the nonparametric part is not present. The asymptotic efficiency of the proposed estimator for the linear component is studied for p→∞. It is shown that the proposed estimator of the linear component asymptotically performs very well.
Keywords: High dimension; Ridge estimator; Differencing sequence; Continuity (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211002835
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:1:p:58-62
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2011.08.019
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().