EconPapers    
Economics at your fingertips  
 

Empirical likelihood for the parametric part in partially linear errors-in-function models

Zhensheng Huang

Statistics & Probability Letters, 2012, vol. 82, issue 1, 63-66

Abstract: Partially linear errors-in-function models were proposed by Liang (2000), but their inferences have not been systematically studied. This article proposes an empirical likelihood method to construct confidence regions of the parametric components. Under mild regularity conditions, the nonparametric version of the Wilk’s theorem is derived. Simulation studies show that the proposed empirical likelihood method provides narrower confidence regions, as well as higher coverage probabilities than those based on the traditional normal approximation method.

Keywords: Confidence region; Empirical likelihood; Errors in function; Partially linear model (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211002847
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:1:p:63-66

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2011.08.020

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:82:y:2012:i:1:p:63-66