EconPapers    
Economics at your fingertips  
 

Variable selection and coefficient estimation via composite quantile regression with randomly censored data

Rong Jiang, Weimin Qian and Zhangong Zhou

Statistics & Probability Letters, 2012, vol. 82, issue 2, 308-317

Abstract: Composite quantile regression with randomly censored data is studied. Moreover, adaptive LASSO methods for composite quantile regression with randomly censored data are proposed. The consistency, asymptotic normality and oracle property of the proposed estimators are established. The proposals are illustrated via simulation studies and the Australian AIDS dataset.

Keywords: Kaplan–Meier estimator; Randomly censored data; Composite quantile regression; Variable selection; LASSO (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211003385
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:2:p:308-317

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2011.10.017

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:82:y:2012:i:2:p:308-317