EconPapers    
Economics at your fingertips  
 

Optimal rates of convergence in the Weibull model based on kernel-type estimators

Cécile Mercadier and Philippe Soulier

Statistics & Probability Letters, 2012, vol. 82, issue 3, 548-556

Abstract: Let F be a distribution function in the maximal domain of attraction of the Gumbel distribution such that −log(1−F(x))=x1/θL(x) for a positive real number θ, called the Weibull tail index, and a slowly varying function L. It is well known that the estimators of θ have a very slow rate of convergence. We establish here a sharp optimality result in the minimax sense, that is when L is treated as an infinite dimensional nuisance parameter belonging to some functional class. We also establish the rate optimal asymptotic property of a data-driven choice of the sample fraction that is used for estimation.

Keywords: Weibull tail index; Rates of convergence; Kernel-type estimators; Optimal sample fraction; Sequential procedure (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211003762
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:3:p:548-556

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2011.11.022

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-17
Handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:548-556