Model-based likelihood ratio confidence intervals for survival functions
Sundarraman Subramanian
Statistics & Probability Letters, 2012, vol. 82, issue 3, 626-635
Abstract:
We introduce an adjusted likelihood ratio procedure for computing pointwise confidence intervals for survival functions from censored data. The test statistic, scaled by a ratio of two variance quantities, is shown to converge to a chi-squared distribution with one degree of freedom. The confidence intervals are seen to be a neighborhood of a semiparametric survival function estimator and are shown to have correct empirical coverage. Numerical studies also indicate that the proposed intervals have smaller estimated mean lengths in comparison to the ones that are produced as a neighborhood of the Kaplan–Meier estimator. We illustrate our method using a lung cancer data set.
Keywords: Gaussian process; Lagrange multiplier; Maximum likelihood estimate; Misspecified model; Semiparametric random censorship model (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211003828
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:3:p:626-635
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2011.11.028
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().