A note on the structure of the quadratic subspace in discriminant analysis
Santiago Velilla
Statistics & Probability Letters, 2012, vol. 82, issue 4, 739-747
Abstract:
This paper explores some properties of the quadratic subspace, a tool for dimension reduction in discriminant analysis (Velilla, 2008, 2010). This linear manifold has a fairly complex structure, and it may sometimes include components with both mean and covariance separation properties. In this case, an assumption of orthogonality between the leading location directions and the bulk of the dispersion subspaces can help to find an adequate directional representation of it in practice. Two real data sets are analyzed.
Keywords: Dimension reduction in quadratic discriminant analysis; Location–dispersion orthogonality; SAVE; SIR; SIRII (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211004123
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:4:p:739-747
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2011.12.020
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().