EconPapers    
Economics at your fingertips  
 

Enhanced consistency of the Resampled Convolution Particle Filter

Jean-Pierre Vila

Statistics & Probability Letters, 2012, vol. 82, issue 4, 786-797

Abstract: Among the convolution particle filters for discrete-time dynamic systems defined by nonlinear state space models, the Resampled Convolution Filter is one of the most efficient, in terms of estimation of the conditional probability density functions (pdf’s) of the state variables and unknown parameters and in terms of implementation. This nonparametric filter is known for its almost sure L1-convergence property. But contrarily to the other convolution filters, its almost sure punctual convergence had not yet been established. This paper is devoted to the proof of this property.

Keywords: State space dynamic systems; Particle filtering; Kernel density estimator; Resampled Convolution Filter (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212000041
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:4:p:786-797

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2012.01.003

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:82:y:2012:i:4:p:786-797