Enhanced consistency of the Resampled Convolution Particle Filter
Jean-Pierre Vila
Statistics & Probability Letters, 2012, vol. 82, issue 4, 786-797
Abstract:
Among the convolution particle filters for discrete-time dynamic systems defined by nonlinear state space models, the Resampled Convolution Filter is one of the most efficient, in terms of estimation of the conditional probability density functions (pdf’s) of the state variables and unknown parameters and in terms of implementation. This nonparametric filter is known for its almost sure L1-convergence property. But contrarily to the other convolution filters, its almost sure punctual convergence had not yet been established. This paper is devoted to the proof of this property.
Keywords: State space dynamic systems; Particle filtering; Kernel density estimator; Resampled Convolution Filter (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212000041
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:4:p:786-797
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.01.003
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().