Approximate maximum entropy on the mean for instrumental variable regression
Jean-Michel Loubes and
Paul Rochet
Statistics & Probability Letters, 2012, vol. 82, issue 5, 972-978
Abstract:
We want to estimate an unknown finite measure μX from a noisy observation of generalized moments of μX, defined as the integral of a continuous function Φ with respect to μX. Assuming that only a quadratic approximation Φm is available, we define an approximate maximum entropy solution as a minimizer of a convex functional subject to a sequence of convex constraints. We establish asymptotic properties of the approximate solution under regularity assumptions on the convex functional, and we study an application of this result to instrumental variable estimation.
Keywords: Approximate maximum entropy; Inverse problem (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212000533
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:5:p:972-978
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.02.006
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().