How fast increasing powers of a continuous random variable converge to Benford’s law
Michał Ryszard Wójcik
Statistics & Probability Letters, 2013, vol. 83, issue 12, 2688-2692
Abstract:
It is known that increasing powers of a continuous random variable converge in distribution to Benford’s law as the exponent approaches infinity. The rate of convergence has been estimated using Fourier analysis, but we present an elementary method, which is easier to apply and provides a better estimation in the widely studied case of a uniformly distributed random variable.
Keywords: Benford’s law; Uniform distribution modulo 1; Mantissa distribution; Significand distribution; Fourier coefficients (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715213002927
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:12:p:2688-2692
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2013.09.003
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().