A note on the existence and uniqueness of quasi-maximum likelihood estimators for mixed regressive, spatial autoregression models
Mengyuan Li,
Dalei Yu and
Peng Bai
Statistics & Probability Letters, 2013, vol. 83, issue 2, 568-572
Abstract:
This note studies the existence and uniqueness of quasi-maximum likelihood estimator for mixed regressive, spatial autoregression model with continuously distributed response vector. Under very mild conditions that n>rank(Xn)+1 (n is the sample size and Xn is the n×p constant matrix of regressors), we show that the quasi-likelihood function has exactly one maximum with probability one in the parameter space.
Keywords: Existence; Mixed regressive, spatial autoregression model; Quasi-likelihood function; Quasi-maximum likelihood estimator; Uniqueness (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212004099
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:2:p:568-572
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.11.002
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().