EconPapers    
Economics at your fingertips  
 

A multiple window scan statistic for time series models

Xiao Wang, Bo Zhao and Joseph Glaz

Statistics & Probability Letters, 2014, vol. 94, issue C, 196-203

Abstract: In this article we extend the results derived for scan statistics in Wang and Glaz (2014) for independent normal observations. We investigate the performance of two approximations for the distribution of fixed window scan statistics for time series models. An R algorithm for computing multivariate normal probabilities established in Genz and Bretz (2009) can be used along with proposed approximations to implement fixed window scan statistics for ARMA models. The accuracy of these approximations is investigated via simulation. Moreover, a multiple window scan statistic is defined for detecting a local change in the mean of a Gaussian white noise component in ARMA models, when the appropriate length of the scanning window is unknown. Based on the numerical results, for power comparisons of the scan statistics, we can conclude that when the window size of a local change is unknown, the multiple window scan statistic outperforms the fixed window scan statistics.

Keywords: ARMA models; Gaussian white noise; Minimum P-value statistic; Moving sum; Multiple window scanning (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715214002636
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:94:y:2014:i:c:p:196-203

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2014.07.025

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:94:y:2014:i:c:p:196-203