Estimation and test procedures for composite quantile regression with covariates missing at random
Zijun Ning and
Linjun Tang
Statistics & Probability Letters, 2014, vol. 95, issue C, 15-25
Abstract:
In this paper, we study the weighted composite quantile regression (WCQR) for general linear model with missing covariates. We propose the WCQR estimation and bootstrap test procedures for unknown parameters. Simulation studies and a real data analysis are conducted to examine the finite performance of our proposed methods.
Keywords: Composite quantile regression; General linear model; Missing covariates; Bootstrap (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521400282X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:95:y:2014:i:c:p:15-25
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2014.08.003
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().