Descents following maximal values in samples of geometric random variables
Margaret Archibald,
Aubrey Blecher,
Charlotte Brennan and
Arnold Knopfmacher
Statistics & Probability Letters, 2015, vol. 97, issue C, 229-240
Abstract:
We consider samples of geometric random variables and find the average size of the descent after the first and last maximal values. These are asymptotically but not exactly equal, with the descent after the last maximum being slightly larger than that after the first. Thereafter we calculate the probability that the descent after the last maximum is equal to, greater than, or less than the descent after the first maximum. Finally we compute asymptotic expansions for these probabilities.
Keywords: Geometric random variable; Generating function; Rice’s method; Asymptotic approximation; Descent; Maximum (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521400399X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:97:y:2015:i:c:p:229-240
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2014.11.023
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().