Subject–action–object-based morphology analysis for determining the direction of technological change
Junfang Guo,
Xuefeng Wang,
Qianrui Li and
Donghua Zhu
Technological Forecasting and Social Change, 2016, vol. 105, issue C, 27-40
Abstract:
Morphology analysis, despite being a strong stimulus for the development of new alternatives, largely relies on domain experts and neglects the relationships between keywords in the construction of morphological structures. In addition, there are few systematic approaches to prioritize the morphological configurations. To address these issues, a hybrid approach is proposed, which enhances the performance of morphology analysis by combining it with subject–action–object (SAO) semantic analysis. Initially, a keyword co-occurrence patent set for subsequent SAO analysis is prepared based on keywords frequency vector analysis. Then, SAO structures are extracted and semantic analysis is performed to identify the relationships between keywords, which help to build morphological structures more objectively. In addition, a well-defined evaluation system that contains eight sub-indexes is proposed to evaluate the morphological configurations. Finally, to demonstrate and validate the proposed approach, the dye-sensitized solar cells technology is employed as the case study. Results indicate that the most promising combination we predict appears frequently in 2012–2014 and the distribution of it is also close to the fact in 2012–2014. Accordingly, the proposed method can be used to effectively determine the direction of technological change and to forecast technology innovation opportunities.
Keywords: Morphology analysis; Subject–action–object (SAO); Technology change; Text mining; Dye-sensitized solar cells (DSSCs) (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162516000299
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:105:y:2016:i:c:p:27-40
DOI: 10.1016/j.techfore.2016.01.028
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().