EconPapers    
Economics at your fingertips  
 

Improving scenario discovery by bagging random boxes

J.H. Kwakkel and S.C. Cunningham

Technological Forecasting and Social Change, 2016, vol. 111, issue C, 124-134

Abstract: Scenario discovery is a model-based approach to scenario development under deep uncertainty. Scenario discovery relies on the use of statistical machine learning algorithms. The most frequently used algorithm is the Patient Rule Induction Method (PRIM). This algorithm identifies regions in an uncertain model input space that are highly predictive of model outcomes that are of interest. To identify these regions, PRIM uses a hill-climbing optimization procedure. This suggests that PRIM can suffer from the usual defects of hill climbing optimization algorithms, including local optima, plateaus, and ridges and valleys. In case of PRIM, these problems are even more pronounced when dealing with heterogeneously typed data. Drawing inspiration from machine learning research on random forests, we present an improved version of PRIM. This improved version is based on the idea of performing multiple PRIM analyses based on randomly selected features and combining these results using a bagging technique. The efficacy of the approach is demonstrated using three cases. Each of the cases has been published before and used PRIM. We compare the results found using PRIM with the results found using the improved version of PRIM. We find that the improved version is more robust to new data, can better cope with heterogeneously typed data, and is less prone to overfitting.

Keywords: Scenario discovery; Robust decision making; Exploratory modeling; Deep uncertainty (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162516301238
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:111:y:2016:i:c:p:124-134

DOI: 10.1016/j.techfore.2016.06.014

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:tefoso:v:111:y:2016:i:c:p:124-134