Recent developments of control charts, identification of big data sources and future trends of current research
Robert G. Aykroyd,
Víctor Leiva and
Fabrizio Ruggeri
Technological Forecasting and Social Change, 2019, vol. 144, issue C, 221-232
Abstract:
Control charts are one of the principal tools to monitor dynamic processes with the aim of rapid identification of changes in the behaviour of these processes. Such changes are usually associated with a move from an in-control condition to an out-of-control condition. The paper briefly reviews the historical origins and includes examples of recent developments, focussing on their use in fields different from the industrial applications in which they were initially derived and often employed. It also focusses on cases which depart from the commonly used Gaussian assumption and then considers potential effects of the big data revolution on future uses. A bibliometric analysis is also presented to identify distinct groups of research themes, including emerging and underdeveloped areas, which are hence potential topics for future research.
Keywords: Bibliometric analysis; Big data; Co-word analysis; Non-normality; R software; Statistical process control; Text-mining (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162518312733
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:144:y:2019:i:c:p:221-232
DOI: 10.1016/j.techfore.2019.01.005
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().