EconPapers    
Economics at your fingertips  
 

A novel machine learning approach for evaluation of public policies: An application in relation to the performance of university researchers

María Teresa Ballestar, Luis Miguel Doncel, Jorge Sainz () and Arturo Ortigosa-Blanch

Technological Forecasting and Social Change, 2019, vol. 149, issue C

Abstract: Research has become the main reference point for academic life in modern universities. Research incentives have been a controversial issue, because of the difficulty of identifying who are the main beneficiaries and what are the long-term effects. Still, new policies including financial incentives have been adopted to increase the research output at all possible levels. Little literature has been devoted to the response to those incentives. To bridge this gap, we carry out our analysis with data of a six years program developed in Madrid (Spain). Instead of using a traditional econometric approach, we design a machine learning multilevel model to discover on whom, when, and for how long those policies have an effect. The empirical model consists of an automated nested longitudinal clustering (ANLC) performed in two stages. Firstly, it performs a stratification of academics, and secondly, it performs a longitudinal segmentation for each group. The second part considers the researchers’ sociodemographic, academic information and the evolution of their performance over time in the form of the annual percentage variation of their marks over the period. The new methodology, whose robustness is tested with a multilayer perceptron artificial neural network with a back-propagation learning algorithm, shows that tenure track researchers present a better response to incentives than tenured researches, and also that gender plays an important role in academia.

Keywords: Research evaluation; Machine learning; Longitudinal clustering; Incentive-based policies (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162519311217
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:149:y:2019:i:c:s0040162519311217

DOI: 10.1016/j.techfore.2019.119756

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:tefoso:v:149:y:2019:i:c:s0040162519311217