From technological development to social advance: A review of Industry 4.0 through machine learning
Changhun Lee and
Chiehyeon Lim
Technological Forecasting and Social Change, 2021, vol. 167, issue C
Abstract:
Industry 4.0 has attracted considerable interest from firms, governments, and individuals as the new concept of future computer, industrial, and social systems. However, the concept has yet to be fully explored in the scientific literature. Given the topic's broad scope, this work attempts to understand and clarify Industry 4.0 by analyzing 660 journal papers and 3,901 news articles through text mining with unsupervised machine learning algorithms. Based on the results, this work identifies 31 research and application issues related to Industry 4.0. These issues are categorized and described within a five-level hierarchy: 1) infrastructure development for connection, 2) artificial intelligence development for data-driven decision making, 3) system and process optimization, 4) industrial innovation, and 5) social advance. Further, a framework for convergence in Industry 4.0 is proposed, featuring six dimensions: connection, collection, communication, computation, control, and creation. The research outcomes are consistent with and complementary to existing relevant discussion and debate on Industry 4.0, which validates the utility and efficiency of the data-driven approach of this work to support experts’ insights on Industry 4.0. This work helps establish a common ground for understanding Industry 4.0 across multiple disciplinary perspectives, enabling further research and development for industrial innovation and social advance.
Keywords: Industry 4.0; Fourth industrial revolution; Review; Survey; Text mining (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162521000858
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:167:y:2021:i:c:s0040162521000858
DOI: 10.1016/j.techfore.2021.120653
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().