EconPapers    
Economics at your fingertips  
 

A novel approach for DDoS attacks detection in COVID-19 scenario for small entrepreneurs

Akshat Gaurav, Brij B. Gupta and Prabin Kumar Panigrahi

Technological Forecasting and Social Change, 2022, vol. 177, issue C

Abstract: The current COVID-19 issue has altered the way of doing business. Now that most customers prefer to do business online, many companies are shifting their business models, which attracts cyber attackers to launch several kinds of cyberattacks against commercial companies simultaneously. The most common and lethal DDoS attack disables the victim’s online resources. While large businesses can afford defensive measures against DDoS assaults, the situation is different for new entrepreneurs. Their lack of security resources restricts their ability to ward off DDoS attacks. Here, we aim to highlight the problems that prospective entrepreneurs should be aware of before joining the business, followed by a filtering mechanism that efficiently identifies DDoS assaults in the COVID-19 scenario, which is the subject of our research. The suggested approach employs statistical and machine learning techniques to discriminate between DDoS attack data and regular communication. Our suggested framework is cost-effective and identifies DDoS attack traffic with a 92.8% accuracy rate.

Keywords: DDoS; Flash crowd; Entropy; Machine learning; Small entrepreneurs (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162522000865
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:177:y:2022:i:c:s0040162522000865

DOI: 10.1016/j.techfore.2022.121554

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:tefoso:v:177:y:2022:i:c:s0040162522000865