EconPapers    
Economics at your fingertips  
 

On the prediction of systemic risk tolerance of cryptocurrencies

Sabri Boubaker, Sitara Karim, Muhammad Abubakr Naeem and Molla Ramizur Rahman

Technological Forecasting and Social Change, 2024, vol. 198, issue C

Abstract: The role of big data in finance is pivotal, especially in forecasting stock prices, mitigating risk, and assessing market anomalies. With the financial system becoming more interconnected, analytical models using large data are gaining prominence in developing risk spillover models. This study estimates the systemic risk tolerance of twenty-five high-valued cryptocurrencies and finds that Fantom has the highest tolerance, while Bitcoin and Ethereum have a lower tolerance due to their large market share. It also shows that the common trend of cryptocurrencies enhances each other's tolerance and develops a predictive model for systemic risk tolerance. The study can help investors and market participants devise strategies for safe haven investment, hedging, and speculation during a market downturn.

Keywords: Systemic risk tolerance; Cryptocurrency; Commonality; Crisis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162523006480
Full text for ScienceDirect subscribers only

Related works:
Working Paper: On the Prediction of Systemic Risk Tolerance of Cryptocurrencies (2024)
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006480

DOI: 10.1016/j.techfore.2023.122963

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006480