EconPapers    
Economics at your fingertips  
 

Machine learning and the optimization of prediction-based policies

Pietro Battiston, Simona Gamba and Alessandro Santoro

Technological Forecasting and Social Change, 2024, vol. 199, issue C

Abstract: We present a procedure for the optimal implementation of public policies that involve predicting an individual behavior or characteristic. By linking prediction errors of any given classification model to the resulting social welfare, we provide a simple measure to rank different models and select the optimal one. Such measure is defined as the difference between the social welfare of a given policy and that of an error-free policy, and it is related to the ROC curve employed in the Machine Learning literature. We extend the cost isometrics approach described in the literature by considering the case of heterogeneous costs of type I and II errors. We apply our approach to the prediction of inaccurate tax returns issued by Italian self-employed and sole proprietorships. We show that the approach can result in substantial increases in revenues, and that random forest models, beyond providing comparatively good predictions, yield important insights. In our case, they both provide empirical support for existing theories on tax evasion — highlighting, for instance, cross-sectoral heterogeneity — and extend our understanding of the phenomenon — such as the role of bunching.

Keywords: Prediction; Public policy; ROC curve; Machine learning; Tax behavior (search for similar items in EconPapers)
JEL-codes: C53 D78 H50 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162523007655
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:199:y:2024:i:c:s0040162523007655

DOI: 10.1016/j.techfore.2023.123080

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:tefoso:v:199:y:2024:i:c:s0040162523007655