EconPapers    
Economics at your fingertips  
 

Big data and machine learning-based decision support system to reshape the vaticination of insurance claims

Rachana Jaiswal, Shashank Gupta and Aviral Tiwari

Technological Forecasting and Social Change, 2024, vol. 209, issue C

Abstract: Based on actuarial science theory, decision-making theory, and anonymous big data, this study employs machine learning to advance insurance claim forecasting, aiming to enhance pricing accuracy, mitigate adverse selection risks, and optimize operational efficiency for improved customer satisfaction and global competitiveness. The study utilized the Boruta algorithm with LightGBM for feature selection, analyzing a 57-dimensional dataset and identifying an optimal subset of 24 features. The improved LightGBM model achieved superior results (AUC ∼ 0.9272 and accuracy ∼ 92.94 %), surpassing other models evaluated. Beyond operational improvements, the proposed model holds the potential to contribute to various United Nations SDGs, such as promoting financial inclusion (SDG 1; SDG 10), reducing fraud, improving public safety (SDG 3; SDG 11; SDG 13), and encouraging sustainable practices (SDG 9; SDG 11). By utilizing data-driven insights to make more informed and accurate decisions, insurance companies can provide better services to their policyholders and contribute to a more equitable and sustainable society.

Keywords: Claim frequency; Risk management; Predictive insurance analytics; Sustainable development goals; Machine learning; Big data; LightGBM (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162524006279
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:209:y:2024:i:c:s0040162524006279

DOI: 10.1016/j.techfore.2024.123829

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:tefoso:v:209:y:2024:i:c:s0040162524006279